
 Version DRAFT 1 (July 31, 2001) Page 1 of 8

HTTP DB Specification
Version DRAFT 1, July 31, 2001

Leeland Artra, CSI UW

1 - Background
When the programmers at CSI were originally asked to write a Java application that managed
and interacted with a data persistence mechanism for the lab software research, they initially
created a persistence mechanism directly in the prototype applications that used files on the local
machine. However what was needed was something that would read/write data from/to a shared
repository. The repository requirements were simply that it had to be shared amongst a group of
applications and clients and reasonably responsive. So it could have been anything at all
including flat files in a centralized location using a shared file system.

But, when engineering a scaleable high performance repository design based on a shared file
scheme there where three major inconveniences:

1. querying the stored data was an extremely cumbersome task;
2. users had to have direct access to the shared files to read and write from/to the centralized

location; and
3. remote users may not have direct access to the shared files or data, for example, those

outside of the facility’s computer network.
The beast approach was to design an application that resolved these problems from the start.

The initial design was to create an application that accessed a SQL database via a JDBC layer
with possibly some connection and data caching scheme built in. This solved both problems
because data mining a SQL database is trivial, and the application would be easily loaded and
run locally or by some shared file system. Then the user could easily access a database that is
installed on any IP addressable node on the network. (See Figures 1 and 2.)

Moulag e D ataOb ject

Labscape N ode/Edg e

O bject Pool M anager (poolm an-2.0.4)

Type 4 JD BC D river (m m.m ysql 2.0.6)

JD BC N etwork Protocol

JD BC Com m unicat ions D aemon

Relat ional Database (M ySQL)

Op erat ing S ystem (FreeBSD)

Java Objects On Client

Communications Layer

Server Side Applications

CSI CST Objects

Off the Shelf Libraries,
Applications and
Services

Stand ard
C om m unications
Protocols

Figure 1, Data Repository Design Layer Diagram v1

HTTP DB Specification, Version DRAFT 1 (July 31, 2001)

 Page 2 of 8

Database
Server

Network

JDBC
Protocol

Relational
Database

JDBC
Protocol

Client

Figure 2, Data Repository Design Usage Diagram

While fully engineering the system’s the data access layer it was realized that this architecture
was not a scalable or even viable solution for clients. In this approach each client would be
making JDBC calls directly, hence each client would require the JDBC and caching drivers be
directly installed, making for an extremely bulky client. (JDBC drivers can increase the size of
application almost 4 MB, plus downloading such a client can take at least 20 minutes on a 28
Kbits/sec connection.) Therefore, the initial approach was not a reasonable solution because the
requirements were to keep the keep the size of the client relatively small, keep the complexity of
setup down to a minimum and something that could scale.

Another Java technology, Java servlets solved these design problems. Servlets are Java programs
that reside on a server and are executed by the server's servlet engine. Thus providing a gateway
to central (high speed) systems that would be the key point of installation and configuration. The
Java servlet is essentially the middle tier of this design. The clients communicate with the servlet
through HTTP, and the servlet communicates with the database through JDBC. Because the
servlet is directly communicating with the database the is no need to include bulky extra drivers
on the client systems. Instead, the drivers are install and configured on the server keeping the
client requirements very lightweight at just under 11K.

2 - Design Summary
The server runs the Apache HTTP server which is a general purpose web server. It is used to
distribute our documentation and classes to the clients. Apache also has a servlet engine called
Apache Tomcat (available from www.apache.org), which is the reference implementation for the
Java Servlet 2.2 technology. Tomcat is the container that manages our servlets. Apache HTTP
Server and Apache Tomcat can be easily integrated to communicate with each other, making the
servlets easily accessible by the HTTP client.

The HTTP DB system passes data as plain text (rather than as serialized Java objects or XML).
This technique is simple to understand, implement and maintain. The database requests are
formatted by client code into key-value pairs and sent directly to the servlet.

A few Java classes have been made that simplify the client/server communication. Developing
objects to do the communication creates a simple API where an object’s data is quickly
formatted and passed on to the database while the job of sending the data to the server is hidden
within the implementation. This simplifies the procedure of reading/writing from/to the database
down to a couple of simple method calls. The classes that are responsible for this communication

HTTP DB Specification, Version DRAFT 1 (July 31, 2001)

 Page 3 of 8

are CommunicationHandler, QueryRequest, and QueryResponse. These classes are portable to
almost any project because they are generic. (See Figure 3.)

Jakarta / Tomcat Serverlet JVM

Moulage DataObject

Labscape Node/Edge

Object Pool Manager (poolman-2.0.4)

Type 4 JDBC Driver (mm.mysql 2.0 .6)

JDBC Network Protocol

Relational Database (MySQL)

Operating System (FreeBSD)

Apache Web Server

HTTP DB Serverlet

HTTP / HTTPS
Standard
Communications
Protocols

CSI
CST
Objects

Off the shelf librararies,
applications and services

Java Objects On Client

Java Object on Server

Communications Layer

Server Side Application

Java Objects On Client

Communications Layer

Java Object on Server

Java Object on Server

Server Side Application

Server Side Application

Server Side Application

Pool Manager not yet
implemented to allow
for gathering a base line
performance data set.

Figure 3, Data Repository Design Layer Diagram v2

The servlet extends javax.servlet.http.HttpServlet. There are two methods in the HttpServlet
abstract class that are implemented in the servlet: the doGet() method and the doPost() method.
The servlet's doGet() method is used to retrieve data from the database, and the doPost() method
is used to write to the database. The methods are split since HTTP GET requests are a natural
way of retrieving content from a server. While HTTP POST requests are used to send content to
a server.

3 - HTTP DB Serverlet
The HTTP DB service is run primarily by a Java serverlet class that provides an access layer
between HTTP requests and one or more database systems. Its main function is to play the role
of the "middleman" in the communication of client(s) with a database. (See Figure 4.)

HTTP DB Specification, Version DRAFT 1 (July 31, 2001)

 Page 4 of 8

Data Classes on Client

Application /
Web Browser

Get Object(s)
based on attribute

Search Criteria

Request Server
Environment

Update Specific
Object

Insert New Object

Reinitialize Server

Figure 4, Data Repository Serverlet Use Case Diagram

3.1 Serverlet Configuration
The database connection data is retrieved from (in order, last setting wins) a default setting, file,
and finally server environment under the property names "httpdb.NAME". httpdb.propertiesFile
is the only exception as it can only be set in the serverlet environment.

1. Properties:
• The configuration properties are named value pairs of strings.

Configuration Properties
Property Default

httpdb.propertiesFile none

httpdb.allowShowProperties NO

httpdb.jdbcDriver org.gjt.mm.mysql.Driver

httpdb.url jdbc:mysql://localhost/test?user=test&password=test

httpdb.user none

httpdb.password none

2. Property Translation:
If httpdb.user or httpdb.password are set the strings "USER_NAME" and "USER_PASS" in the
"httpdb.url" property are replaced (if present) with the appropriate environment data.

3.2 Serverlet Usage
Once running the serverlet responds to HTTP POST and GET requests. In both forms a
minimum set of parameters must be specified using the HTTP GET URL encoding. At the
minimum an ACTION HTTP GET command is required.

3.2.1 Usage Notes
1. If TABLE_NAME is not set the table ‘httpdb_default’ is used.

HTTP DB Specification, Version DRAFT 1 (July 31, 2001)

 Page 5 of 8

2. Each table under HTTP DB management contains the unique key text column named ID, the
indexed date column named CREATION_DATE, and the automatically tracked indexed date
column LAST_MODIFIED.

3. All attribute names will be translated to uppercase before comparison to the database.
4. Any POST request with out an ID parameter will cause a new row to be inserted with a new

unique ID for that table.
5. IDs are base 64 encoded cryptographically generated 1024 bit keys. They are only checked

for uniqueness against the table the new ID is being inserted into.
6. If no TABLE_NAME parameter is provided the default table name of ‘http_db’ is used.
7. Table names are not translated to uppercase and are case sensitive.
8. All requests may receive a WARNING parameter on the return which is any language

warning messages from the underlying database system.
9. All requests may receive an ERROR parameter which will explain why a particular request

was not fulfilled. The ERROR message may come from the underlying database or from the
serverlet.

3.2.2 HTTP GET Requests
1. GET_DATA
Example URL:
http://hostname/serverlet/HTTPDB?ACTION=GET_DATA[&TABLE_NAME=TABLE[&VAR=VAL...]]

For the GET_DATA action command the serverlet will create a list of all the HTTP GET values
(except for ACTION and TABLE_NAME). It will then create a database query command like
"select * from TABLE_NAME" with the values assembled as "WHERE Variable='Value'
[AND WHERE Variable2='Value2' ...]".

2. REINIT
Example URL:
http://hostname/serverlet/HTTPDB?ACTION=REINIT

When the serverlet receives this ACTION command it will close all database connections,
reread the httpdb.propertiesFile (if set), drop all cached data and reconnect to the database.

3. SHOW_PROPERTIES
Example URL:
http://hostname/serverlet/HTTPDB?ACTION=SHOW_PROPERTIES

When the serverlet receives this ACTION command it will, if httpdb.allowShowProperties is set
to "YES", return a properties list in the body of the HTML document containing the named value
list for all of its environmental settings.

3.2.3 HTTP POST Requests
1. UPDATE
Example URL:
http://hostname/serverlet/HTTPDB?ACTION=UPDATE[&TABLE_NAME=TABLE[&ID=ID_VAL]])

HTTP DB Specification, Version DRAFT 1 (July 31, 2001)

 Page 6 of 8

When the serverlet receives this ACTION command it will first check to see if the named table
exists. If the named table does not exist it will create a new skeleton table by that name.

Next the HTTB DB serverlet will make sure that all the named values have an associated text
column in the above table. If any columns do not exist it will automatically add the needed text
column.

Once the table has been check the serverlet will check if an object or row ID was given. If not it
will automatically generate a new ID and insert a blank row into the table.

Finally the serverlet will create a properties list from all other HTTP POST values. Then it
performs a database update operation on the appropriate ID identified row in the named table.
The update operation command will look something like "UPDATE TABLE " followed by the
POST variables assembled as "SET Variable='Value' [, SET Variable2='Value2' ...] WHERE
ID='<ID>'".

4 - Servlet and Database Performance
Server-side performance is important, and the serverlet improves performance. The most
expensive code in the servlet is the code that sets up the database connection. Performance is
greatly improved by the creation of the connection only once, when the servlet is instantiated in
the init() method.

The servlet implements the interface SingleThreadModel. Because it creates the connection only
once, in the init() method of the servlet, the connection is available to all threads that access the
servlet. Implementing this interface guarantees that two threads will not access the servlet, and
hence the connection object, simultaneously.

Although this approach produces a performance gain, scalability can be increased even further,
since the servlet has been built thread-safe, by later incorporating a database connection pooling
technology. The problem with opening and closing the connection in the init() and destroy()
methods is that it does not allow for multithreading. Connection pooling will solve this problem
by obtaining a connection from the pool every time a servlet is executed. Hence the first thing
the servlet would do, upon entering the doGet() and doPost() methods would be to obtain a
connection from the connection pool. This would allow for the reuse of physical connections and
reduce the overhead involved with opening and closing the connections each time the servlet is
instantiated or destroyed.

Another expensive task in the servlet is the SQL query of the database. The use of nonprepared
statements is useful for infrequent queries because they are not precompiled for efficiency, as are
prepared statement. The SQL statements used in the serverlet must be compiled each time they
are executed. Hence A prepared statement has advantages over this method because it is created
with a parameterized SQL statement. Most databases allow for the definition of user-defined
functions called stored procedures that are actually stored in the database. Using stored
procedures may provide the system with significant performance enhancements. But, they will
also make the server code harder to maintain and far less portable, because stored procedures are
usually database specific. For this reason, this serverlet is design with out the use of stored
procedures.

HTTP DB Specification, Version DRAFT 1 (July 31, 2001)

 Page 7 of 8

This implementation just barely touches one of the major components of Java 2 Enterprise
Edition (J2EE) servlets. The application can be made more sophisticated by using other J2EE
components, such as Enterprise Java Beans, to allow for even greater scalability.

5 - Reference Client
In designing any client the first question that must be answered is “what does the client want to
do?” The following UML Use Case Diagram (Figure 5) answers this question for the reference
client implementation. Essentially the client needs to retrieve data from the database, or write
data to the database, or find out the status of the database.

Figure 5, Reference Implementation Client Use Case Diagram

The code in Listing 1, from the reference client, demonstrates how to perform the GET request
using the CommunicationHandler class. In this case, we are communicating with a servlet that
will query the database and return all of the data associated with employee ID 5555. We first
create the Properties object that will be used to package the query parameters. Then we set the
parameters that will be used by the servlet and the database. The ACTION parameter specifies
the action to be executed by the servlet on the database, and the EMPLOYEE_ID parameter
specifies the database query parameter. Parameters are packaged as key-value pairs when sent
and are similarly retrieved on the server side. (For more information on similar experiments, see
"eMobile: A Sample End-to-End Application Using the Java 2 Platform, Enterprise Edition," in
the Resources section.)

We then send the GET request to the servlet using CommunicationHandler's query(...) method.
The query(...) method may perform either the GET or POST method by specifying the operation
as the first argument. The second and third arguments of the query(...) method are the URL of
the servlet and the packaged Parameters object. The final argument of the query(...) method is a
QueryResponse object. QueryResponse implements an interface,
CommunicationHandler.ResponseHandler, that is passed to the CommunicationHandler to
process the content that is retrieved from the database. Because the database content is also
returned by the servlet as a set of key-value pairs, when the GET request returns, the
QueryResponse object will have retrieved the content of the database query as a Properties
object.

Now let's take a look at sending content using an HTTP POST request from the client. The code
to execute a POST request is more complicated than that of a GET request, because not only will
we send parameters, but the content that we write to the database, as well (see Listing 2).

Just as we did in the GET request, we package our parameters into a Properties object. But here
in the POST request, we additionally package the content that we would like to write to the
database in its own Properties object, Content. We serialize this object by sending it directly to
the server in the content of the HTTP POST request. In Listing 2, we are just sending plain text
as our content type, so we could have packaged our content as key-value pairs in with the
Parameters object. Why? Because if our content type were of another data format—such as
XML—the POST request could easily handle it.

We do not plan to receive any content from the database, but we still define and use a
QueryRequest object for error handling purposes. Error messages from the server are retrieved

HTTP DB Specification, Version DRAFT 1 (July 31, 2001)

 Page 8 of 8

from the QueryResponse object just as they were in the GET request. (The details of the
client/servlet communication are documented in the CommunicationHandler code.)

6 - Bibliography
1. “Tomcat User’s Guide”, Gal Shachor, Alex Chaffee and Rob Slifka,

“http://jakarta.apache.org/tomcat/tomcat-3.3-doc/tomcat-apache-howto.html”.
2. “Working With mod_jk”, Gal Shachor, Mike Braden, Mike Bremford, and Chris Pepper,

“http://jakarta.apache.org/tomcat/tomcat-3.3-doc/mod_jk-howto.html”
3. “Tomcat and JServ”, OOP-Research Group, “http://www.oop-research.com/tomcat_3_1/”.
4. “Tomcat - Apache HOWTO”, Gal Shachor, “http://jakarta.apache.org/tomcat/tomcat-3.3-

doc/tomcat-ug.html”.
5. “Java™ Serverlet Specification, v2.2 Final Release”, James Duncan Davidson and Danny

Coward, Sun Microsystems.
6. “JavaServer Pages™ Specification, v1.1”, Java Software, Sun Microsystems.
7. “Mastering The Details With Technical Charts”, Leeland Artra, Version 1 June 2001.
8. "eMobile: A Sample End-to-End Application Using the Java 2 Platform, Enterprise

Edition", MDE Enterprise Java Team,
“http://developer.java.sun.com/developer/technicalArticles/whitepapers/javaone00/eMobile.pdf”.

9. “Growing JSP and Serverlet Sites To EJB-Based Services”, by Patrick Sean Neville, Java
Developer’s Journal, June 2001, Volume 6 Issue 6 pgs 44-52.

10. "JDBC Developer's Guide and Reference", Brian Wright and Thomas Pfaeffle,
“http://technet.oracle.com/docs/products/oracle8i/doc_library/817_doc/java.817/a83724/toc.htm”.

11. "JDBC 2.0 Standard Extension API", Seth White and Mark Hapner,
“http://java.sun.com/products/jdbc/jdbc20.stdext.pdf”.

